

GPQM96

Power Quality Meter

User Manual

TABLE OF CONTENTS

1. SAFETY PRECAUTIONS	1
2. PRODUCT DESCRIPTION	1
2.1 OVERVIEW	1
2.2 EXTEND MODULES	1
2.3 MEASUREMENT	2
2.4 REAL-TIME MEASUREMENT	3
2.5 ENERGY METERING AND TARIFF METER READING	4
2.6 ENERGY QUALITY	6
2.7 DEMAND RECORD	10
2.8 EVENT RECORD	10
2.9 HELP INFORMATION	11
2.10 EXTEND MODULE	11
3 INSTALLATION AND WIRING	15
3.1 OUTLINE DIMENSION	15
3.2 INSTALLATION METHOD	15
3.3 WIRING	16
3.4 SIGNAL WIRING DIAGRAM	17
4. OPERATION	18
4.1 PANEL DESCRIPTION	18
5 SETTING	19
5.1 SIGNS FOR KEYS AND CORRESPONDING FUNCTIONS	19
5.2 PROGRAMMING AND SETTING MENU	20
5.3 EXAMPLE FOR PROGRAMMING OPERATION	29
6. COMMUNICATION	30
7. TECHNICAL SPECIFICATIONS	31

1. Safety Precautions

The manufacturer shall not be held responsible for failure to comply with the instructions in this manual.

The equipment must be installed and serviced only by qualified personnel.

Never work alone.

Prior to any work on or in the equipment, isolate the voltage inputs and auxiliary power supplies, short the secondary of all CT, but never short the secondary of PT.

Always use a properly rated voltage sensing device to conform that all power is off.

Risk of damaging device

- The voltage of the auxiliary power supply is beyond the rated range.
- The frequency of the power distribution system is beyond the rated range.
- The input polarity of the voltage or the current is wired improperly.

2. Product description

2.1 Overview

GPQM96 is equipped with electrical variable measurement, energy metering and power quality analysis functions. GPQM96 also can be extended with I/O modules for monitoring and controlling equipment at field, realizing system integration with different smart electricity distribution system and energy management system, and sharing monitoring data and energy data.

2.2 Extend modules

GPQM96 has two extension interfaces for connecting modules and expand functions. Please take attention to the following points when connecting modules to GPQM96.

a) Two modules for one interface at most, and four modules for GPQM96 at most;

Module type	Description
1	4 digital inputs
2	2 relay outputs
3	2 analog inputs: mA
4	2 analog outputs: mA
5	Com module - RJ45, Modbus/TCP
6	Com module - DB9, Profibus-DP
7	Com module - additional RS485, Modbus-RTU
8	Com module - BACnet/MSTP communication
9	Com module - BACnet/IP communication
Remarks	Max 4 extended module
	Only 1 additional Com module can be add-on

2.3 Measurement

The following list shows variables which can be measured by GPQM96 including relative variables calculated from basic electrical parameters.

Measurement variable	Instant	Max	Min	Demand	Sum	Unit
V1/V2/V3	•	•	•	—		[V,kV]
V12/V23/V31	•	•	•	—	-	[V,kV]
11/12/13	•	•	•	•		[A,kA]
F	•	•	•	_	_	[Hz]
P1/P2/P3	•		-	—		[kW,MW,GW]
Ρ	•	•	•	•		[kW,MW,GW]
Q1/Q2/Q3	•		-	—		[kvar,Mvar,Gvar]
Q	•	•	•	•		[kvar,Mvar,Gvar]
S1/S2/S3	•		-	—		[kVA,MVA,GVA]
S	•	•	•	•		[kVA,MVA,GVA]
PF1/PF2/PF3	•	—	—	—	_	—
PF	•	•	•	_	_	_

EP+/EP-	—	_	_	_	•	[kWh,MWh,GWh]
EQ1/EQ2/EQ3/EQ4	—	_	_	_	•	[kvarh,Mvarh,Gvarh]
THDV1/THDV2/THDV3	•	_	_	_	—	[%]
THDI1/THDI2/THDI3	•	_	_	_	—	[%]
Harmonic RMS-U (1 \sim 63th)	•	_	_	_	—	[%]
Harmonic RMS-I (1 \sim 63th)	•	_	_	_	—	[%]
Unbalance-U	•	_	_	_	_	[%]
Unbalance-I	•			_	—	[%]

2.4 Real-time measurement

L-N Volta 1 220.1 v (222.2 2	age) 1.1 min max 200.0 V 230.1 V min max
² 220.2 v d	000.0 V 230.2 V
v3 220.3 v d	min max 000.0 V 230.3 V
vg 220.2 v	
▲ ▶	4

2.5 Energy metering and tariff meter reading

This meter has excellent energy metering functions as follows:

·Total bi-direction active and reactive energy metering

·Phase separated bi-direction active and reactive energy metering

·Fundamental energy metering;

·Four-qradrant reactive energy metering;

·Apparent energy metering;

·Tariff energy metering

The meter shows primary value. Primary value is equal to the secondary value multiplied by voltage or current transformer ratio. Secondary value is the reference to all of the energy. The smallest resolution ratio of secondary value is 1Wh or 1varh. The smallest resolution ratio of energy shown on meter is 0.01kWh or 0.01kvarh.

The storage range of energy is secondary energy 4294967295 Wh, and the display range of energy is primary energy 9999999999 kWh (99.9 billion). The data will not exceed the range if the meter is in its mean time between failures. User can clear the energy data after entering correct password.

Tariff energy: the meter has two sets of tariffs with four kinds of rates in twelve time zones. It starts energy metering in one time zone according to digital input status.

2.5.1 Tariff energy

1 Rate number

Rate number is used to indicate the present tariff of working meter. T 1 indicates Tip rate; T2 indicates Peak rate; T3 indicates Flat rate; T4 means valley rate.

2 Time period

One day can be divided into 12 time periods at most in the meter. The time period must be continuous, which means end time of the first time period is start time of the second time period.

③Rate schedule

Different rate schedules can be preset in the meter. They can perform different tariff in the specified time period. Up to 4 rates can be preset. During programming, rate schedule number is used to indicate what tariff that the meter performs. 1 indicates the first rate schedule.

(4) Holiday

Holiday includes regular holidays(22 days) and irregular holidays(60 days), a total of 82 days.

Regular holidays means the same annual holiday that nation has stipulated, such as January 1st, May 1st, etc. It can be set according to the requirement. Irregular holiday means annual holidays stipulated by different nations, such as Spring Festive(February, 9th,2005). It can be set according to the requirement. The tariff for holiday can be any one in the four tariffs.

5 Weekly tariff

Each of the four rates is available for seven days in a week.

6 Monthly tariff

Each of the four rates is available for each month.

7 Priority order of tariff

There are two modes to perform tariffs: holiday tariff and monthly tariff. In holiday tariff mode, the holiday tariff will be performed if the day is holiday, otherwise the weekly tariff will be performed. In monthly tariff mode, it will be performed according to the rate schedule that is set monthly.

↓ Imp/Exp Energy > 2.1 + 00000025452.000kWh - 00000005262.000kWh + 0000000302.000kvarh - 0000000162.000kvarh	Left picture shows bi-direction active/reactive energy. EP+= 25452kWh, EP- = 5262kWh, EQ+ = 302kvarh,
↓ L1 Energy 2.2 + 00000015452.000 kWh - 00000002262.000 kWh + 0000000202.000 kvarh - 0000000062.000 kvarh	Left picture shows Phase A bi-direction active/reactive energy. EP+= 15452kWh, EP- = 2262kWh, EQ+ = 202kvarh, EQ- = 62kvarh。

 4 Quadrants Re. Energy > 2.6 #1 0000006300.000kvarh #2 0000002000.000kvarh #3 0000000500.000kvarh #4 0000000700.000kvarh 	Left picture shows four-quadrant ractive energy. First quadrant Q1 = 6300kvarh, Second quadrant Q2 = 2000kvarh, Third quadrant Q3 = 500kvarh, Fourth quadrant Q4 = 700kvarh.
<pre> <pre> </pre> </pre> <pre> </pre>	Left picture show bi-directional spare active and reactive energy. EP+= 15452kWh, EP- = 3262kWh, EQ+ = 202kvarh, EQ- = 62kvarh.
< Tariff Energy > 2.9 Σ 00000315452 .000 kWh T10000015452 .000 kWh T20000050000 .000 kWh T30000080000 .000 kWh T40000170000 .000 kWh	Left picture shows import active energy in different time zones. Total active energy (Σ) 315452kWh Energy of tariff 1 (T1) 15452kWh Energy of tariff 2 (T2) 50000kWh Energy of tariff 3 (T3) 80000kWh Energy of tariff 4 (T4) 170000kWh

2.6 Energy quality

GPQM96 can monitor and analyze power quality of gird and measure the following variables:

Three phase voltage and current sequence component and unbalance

Electrical variables in three phase system can be divided into positive sequence component, negative sequence component and zero sequence component according to symmetrical component method. If electric system is in normal operation mode, the ratio between negative sequence component RMS value and positive sequence component RMS value is defined as three phase unbalance of an electrical variable.

 ✓ Volts Unbalance ► 	3.1	
Posi-Seq Component 218.8	v	
Neg-Seq Component 000.4	v	Left picture shows three phase voltage
Zero-Seq Component 000.2	v	and current sequence component and
Unbalance Factor 0.001	%	unbalance.
◆ ◆ €		

Phase voltage, line voltage and frequency deviation.

↓ L-N Voltage Deviation ↓ 3.3 △ V1 -10.00 kV △ V2 -10.00 kV △ V3 -10.00 kV	Left picture shows three phase voltage deviation.
← → ←	

Fundamental wave voltage/ current, harmonic voltage/current, fundamental wave active power/reactive power/apparent power, fundamental wave power factor.

✓ Fundamental Voltage > 3.6 V1 220.5 v V2 220.6 v V3 220.7 v	Left picture shows three phase voltage fundamental wave content.

Voltage short-term flicker, long-term flicker and fluctuation

✓ Short Term Severity ▶ 3.14	
L1 001.5 L2 001.6 L3 001.2	Left picture shows voltage short-term flicker value.
< → 4	

 ✓ Voltage Fluctuation > 3.16 L1 010.5 ∨ L2 010.6 ∨ L3 010.7 ∨ 	Left picture shows voltage fluctuation value.
---	---

Voltage and current phase angle

GPQM96 shows three phase voltage and current phase angles. L1 voltage angle is defaulted as

0°. Other phase angles are shown phase difference relative to L1 voltage. Unit: $^\circ$

♦ Phase Angle	
U I 11 000.0° 030.1° 12 120.0° 150.0° 13 240.1° 270.1°	Left picture shows three phase voltage and current phase angles.
✓ Voltage Waveform 3.29 ✓ 150 ✓ 1 = ✓ 2 = ✓ 3 = 100 50 ✓ ✓ -50 ✓ ✓ ✓	Left picture shows three phase voltage waveform.

Voltage crest factor, current K factor

UKPR1 1.414
JKPR2 1.415
KPR3 1.416 Crest facto

	K Factor 3.20	
IK1	1.155	
IK2	1.156	Left picture shows current K factor.
ІКЗ	1.157	
•		

GPQM96 can measure harmonic content of grid. The detailed functions are as follows:

■Measuring 2nd to 63rd harmonics;

■Showing voltage and current bar graph.

THD 3.21 THDV(%) THDI(%) 1 005.0 001.0 2 003.0 002.0 3 006.1 003.1	Left picture shows three phase voltage and current THD.
V1 V2 V3 I1 I2 I3 01 100.0 100.0 100.0 100.0 100.0 100.0 02 000.0 000.0 003.2 000.0 000.0 000.0 000.0 04 000.0	Left picture shows three phase voltage and current subharmonics content.
Harmonic V1 → 3.23 3.23 3.23 3.23 40 3.23 40	Left picture shows voltage subharmonics bar graph.

2.7 Demand record

GPQM96 has six independent demand recording channels to measure and record max. demand, present demand and previous demand of three phase current, total active power, total reactive power and total apparent power.

	Left picture shows present demand of three-phase current.
 ✓ Previous Demand-P > 4.5 P 300.5 kW Q 100.6 kvar S 500.7 kVA 	Left picture shows three-phase total active power, reactive power, apparent power in last cycle.
✓ Max Demand-P > 4.6 P 320.5 kW Q 120.6 kvar S 520.7 kVA	Left picture shows max. demand of three-phase total active power, reactive power and apparent power.

2.8 Event record

Event record includes the total times and lastest occurrence time of power on record, parameter modification record, over current record and so on.

	Event	t Log 1 🕨 6.1					
Туре	Number	Last Record Time					
Power On	0036	17-01-13 08:25:16					
Power Off	0036	17-01-12 17:01:20					
Setting	0010	17-01-05 12:01:51					
Clr Demand	0002	17-01-06 07:25:00	Left picture shows event record 1.				
Clr Energy	0001	17-01-08 08:35:00					
Over Vlots	0000						
Loss Volts	0000						
Over Amps	0000						
•	•						
Type Loss Amps Over Load Under load Events Volts Swell	Number 0000 0000 0000 0224 0016	r Last Record Time	Left picture shows event record 2.				
Volts Sag	0016		4				
Loss Signal	0016		4				
•	•	€					

2.9 Help information

The page shows software version and module status.

Ab	out	
Meter Type	SFERE720	
Firmware Version	1001.169A	
Meter Run Time	0000648427	s
Meter Load Time	0000324557	s
Tx1 Counter	0000029220	
Rx1 Counter	0000029230	
Tx2 Counter	0000000000	
Rx2 Counter	000000000	
System Staus	Voltage Err	
	l 🗧 🗌	

2.10 Extend module

GPQM96 has two extension interfaces for connecting modules and expand functions.

2.10.1 Digital input and relay output of GPQM96

GPQM96 has two digital inputs and two relay outputs.

	Local Digi	ital I/O 🕨 5	.1
	Digital Inp	ut	
No.	Mode	State	
#1 P	ulseCount	t 000000032	
#2	On-Off		
	Relay Out	put	
No.	Mode	State	
#1	Alarm		
#2	Remote		
4	•	4	

Left picture shows digital input and relay output information of GPQM96.

2.10.2 Digital input (FM1, FM2)

FM1 module has digital input adopting wet contact mode to measure AC 220V signal.

FM2 module has digital input adopting dry contact mode which gets power supply from inside of meter and with no need for external power supply.

Digital input supports three working modes:

Status monitoring: the meter receives the status of terminal node and shows it on the window.

It also shows the newest status immediately when the status of terminal node changes.

Pulse counting: the meter receives and counts up the number of pulses from terminals. It adds by one when it receives one pulse.

Spare energy: meter starts accumulating spare energy and stops accumulating total energy at the same time when it detects that the digital input becomes closed.

	 Module 	X1 🕨	5.2
	FM1(2DI/A	C220V)	Ver.166A
No.	Mode	Stat	e
01	PulseCount	000	0012345
02	On-Off		_
•	•	€	

Left picture shows working modes of two digitals inputs are synchronous demand and status monitoring. No. 2 digital input receives signal.

	 Module 	X2	5.3
	FM2(4	DI) Ver	r.166A
No.	Mode	State	
01	PulseCount	0000000	032
02	SpareEnergy		
03	On-Off		
04	On-Off		
•	•	€	

Left pictures shows workings modes of four digital inputs. No. 1 digital input is in pulse counting mode, and the pulse number is 32; No. 2 is spare energy, No. 3 and No. 4 digital inputs are in status monitoring mode, No.4 digital input has signal input.

2.10.3 Relay output (FM3)

GPQM96 has two relay outputs. FM3 module is used to add more relay outputs to meter.

GPQM96 relay outputs have two working modes: remote control and off-limit alarm.

FM3 module relay outputs have two working modes: remote control and off-limit alarm. Working mode, alarm item and alarm range of each relay output can be set in programming. As for detailed information about relay output setting, please refer to Appendix 2.

Notice:

Remote control

If user needs to remotely control relay output, please set the working mode as "Remote". Set delay as electrical level mode or set delay time as N * 100ms.

Off-limit alarm

Set relay output as "Alarm" mode, "Mode" is used to select an electrical variable, "Delay" is used to set alarm delay time, "Value" is used to set alarm limit value, "Reset" is used to set alarm recovery threshold value for electrical variable.

	 Module 	X1 > 5.2	
	FM3(2D	O) Ver.166A	
No.	Mode	State	Left picture shows FM3 stat
01	Alarm	_/_	·
02	Remote		information. No. 1 is in off-lin
			alarm mode, No. 2 is in remo
			control mode.
•	•		

2.10.4 Analog input module (FM4)

FM4 module is used to measure 4~20mA signal. The measurement display page is shown as follows,

g inp	g inpu
No.	No. 2
	ou 2

2.10.5 Analog input module (FM5)

FM5 module is used to measure PT100 signal. The measurement display page is shown as follows.

FM5(2Pt100) Ver.166A No. Value Left picture shows PT100 in value. No.1 input temperature is 01 075.5 °C value. No.1 input temperature is 02 027.6 °C 75.5°C, No.2 input temperature is 27.6°C. 27.6°C. 27.6°C.		Module X1 > 5.2	
No. Value 01 075.5 °C 02 027.6 °C You have a structure of the stru		FM5(2Pt100) Ver.166A	
01 075.5 °C 02 027.6 °C value. No.1 input temperature is 75.5°C, No.2 input temperature 27.6°C.	No.	Value	Left picture shows PT100 ir
02 027.6 °C value. No.1 input temperature is 75.5°C, No.2 input temperature 27.6°C.	01	075.5 °C	'
75.5°C, No.2 input temperature	02	027.6 °C	value. No.1 input temperature is
			75.5°C, No.2 input temperature
	•	→	

2.10.6 Analog output module (FM6)

Analog output module can transfer instantenous electrical variables to DC current signal output. If analog output module is conneted to meter, the corresponding display page will be shown on meter. Current value shown in the page is theoretical output value in present status. Analog output item and range can be set through meter.

	Module X2 5.3	
	FM6(2AO/4-20mA)Ver.166A	
No.	Value	
01	12.500 mA	Left picture shown analog output
02	06.000 mA	
		theoretical value. No. 1 output
		12.5mA, No. 2 output 6mA.
•		

3 Installation and wiring

3.1 Outline dimension

3.2 Installation method

- 1) Choose a right place on the fixed distribution cabinet for cutout by size 91×91mm;
- 2) Take off the supporting clips of the meter;
- 3) Insert the meter into the cutout;
- 4) Insert and push the supporting clips to fix the meter.

3.3 Wiring

Typical wiring for 3P4W, 4 CT, no PT

Note:

Auxiliary power supply: AC/DC (80~270)V

Rated current of fuse: 0.5A

3.4 Signal wiring diagram

Wiring instruction:

(a) External wiring method must be the same with the inner wiring method of the meter. Otherwise the measured data will be incorrect.

(b) Voltage and current signals must be AC signals. Please do not connection DC signals to input terminals.

(c) Voltage input: make sure the input voltage in not higher than the rated voltage of the meter, otherwise, please connect external PT to the meter. If external PT is adopted, the accuracy of meter will depend on the accuracy of external PT. Please make sure the accuracy of external PT

is equal to or better than that of meter. For your convenient maintenance, please adopt wiring terminal row.

(d) Current input: make sure the input current in not higher than the rated current of the meter, otherwise, please connect external CT to the meter. If external CT is adopted, the accuracy of meter will depend on the accuracy of external CT. Please make sure the accuracy of external CT is equal to or better than that of meter. If there is more than one meter connected to the CT, please connect them in serial. Before removing the current input wires of the meters, make sure to cut off the first loop of CT or short connect its second loop. For your convenient maintenance, please adopt wring terminal row.

(e) Make sure voltage and current of three phases corresponding to each other, that means the phase sequence and direction are same. Otherwise, the numbers and signals will be incorrect (power and energy).

4. Operation

4.1 Panel description

A: Display window B. Function indication for keys C: Touch type keys

5 Setting

5.1 Signs for keys and corresponding functions

User can set parameters for meter through keys.

Sign	Function				
	Add number at selected bit				
•	Move downward, switch to next page, change parameter				
•	Move left to change or show data/ switch data bit				
	Move right to change or show data				
4	Return to Main interface directly, return to upper level				
	menu/cancel modification				
+	Enter selected item				
Ļ	Confirm				
P	Zoom display image				
	Edit				
	Next page				
	Ineffective key				

The method of changing numbers

Click to select a bit, click to add number at selected bit
Enter and exit programming status
Enter programming mode: Click or by to select "System setting" in
main interface, and then click to enter programming interface. Select "User" and
input correct password to enter parameter setting mode. (Programming password is defaulted
as 0001 in factory. User can change the password.).

Exit programming mode: return to first level of menu at first, and then click

meter will indicate whether to save modified data or not at this step. If "Yes" is selected, the meter will save modified data and return to main interface; if "No" is selected, the meter will cancel modified data and return to main interface.

5.2 Programming and setting menu

Programming and setting menu adopts hierarchical mode.

5.2.1 Basic parameter setting

	Backlight	00s-99 min 00-backlight constant on
	Bright	1-5
	Language	English
	Password	0001-9999
Basic Settings BackLight 10 Min	Default	Set first display interface after
Bright Level 1 Language English	display	power on. This interface can be
Password 0001 Default Display L-N Voltage		set as U, I, P, E, THD, Waveform,
Tariff Mode Month Tariffs		Demand and Max/Min
	Tariff Mode	Set tariff mode.
▲ ▼ € 2		This Can be set as Month Tariffs
		and Week(Holyday) Tariffs.
	Impulse	0~999999

5.2.2 Signal input setting

		Wiring method	1P2W,3P3W,3P4W
		PT secondary value	0-690V
Signal	Inputs	PT primary value	
Wiring DT Secondary	3P4W		0-999999
PT Secondary	0100 V		
CT Secondary	0001 0	CT secondary value	0-6A
CT Secondary	000600 A		0 0/1
	0001 A		
In Primary	000600 A	CT primary value	0-999999A
		Neutral current primary	
▲ ▼	€ 2		0-999999A
		value	
		Noutral ourrant cocondary	
		Neutral current secondary	0.64
		value	0-0A

5.2.3 Communication setting

		Address	1~247
Comm	Settings		
Address	002		
Baudrate	9600 bps	Baud rate	1200~38400bps
Data Format	N.8.1	Badd late	1200 30400003
Protocol	Modbus-RTU		
		Check mode	E81,081,N81,N82
• •	€ 2	Communication protocol	Modbus-RTU

5.2.4 Digital input setting

Digi	tal Input Settings	
No. 01 02	Mode PulseCount On-Off	There are three working modes of digital input. Pulse counting Status monitoring Spare energy

5.2.5 Relay output setting

Relay O No. 01 02	Mode Alarm Remote	There are two working modes of relay output which are remote communication and alarm.		
Relay Out	put Settings	Alarm outp	out Settir	ngs
Time Item	00.00 s V1 >	Time	Pulse v	vidth: 0.10 \sim 99.99s
Value Hys	240.0 V 030.0 V	Item	See fol	lowing list
Delay	000.0 s	Value	Limit v	alue
		Hys	Hyster	esis value
▲ ▼		Delay	Delay t	ime: (0~9999)×100ms
Relay Out Time	put Settings 00.00 s	Remote co	ntrol out	put mode
A	-	Time		0-99.99s

Electrical variables for alarm are shown in the following list:

Item	Format	Instruction
OFF		Off
		Switching linkage action, relay acts according to digital
DI	0/1	input status. If it is 0, relay closes when digital input is 0;
		if it is 1, relay closes when digital input is 1.
X4.PT L	2002 X ⁰ C	X4 low temperature alarm for any loop
X4.PT H	XXX.X L	X4 high temperature alarm for any loop

X4.PT2L		X4 low temperature alarm for second loop
X4.PT2H		X4 high temperature alarm for second loop
X4.PT1L		X4 low temperature alarm for first loop
X4.PT1H		X4 high temperature alarm for first loop
X3.PT L		X3 low temperature alarm for any loop
X3.PT H		X3 high temperature alarm for any loop
X3.PT2L		X3 low temperature alarm for second loop
X3.PT2H		X3 high temperature alarm for second loop
X3.PT1L		X3 low temperature alarm for first loop
X3.PT1H		X3 high temperature alarm for first loop
X2.PT L		X2 low temperature alarm for any loop
X2.PT H		X2 high temperature alarm for any loop
X2.PT2L		X2 low temperature alarm for second loop
X2.PT2H		X2 high temperature alarm for second loop
X2.PT1L		X2 low temperature alarm for first loop
X2.PT1H		X2 high temperature alarm for first loop
X1.PT L		X1 low temperature alarm for any loop
X1.PT H		X1 high temperature alarm for any loop
X1.PT2L		X1 low temperature alarm for second loop
X1.PT2H		X1 high temperature alarm for second loop
X1.PT1L		X1 low temperature alarm for first loop
X1.PT1H		X1 high temperature alarm for first loop
dmd.S <		Present demand S <
dmd.S >		Present demand S >
dmd.Q < xxxx dmd.Q >		Present demand Q <
		Present demand Q >
dmd.P <		Present demand P<
dmd.P >		Present demand P>
dmd.I <	x.xxx_A	Present demand I <

dmd.I >		Present demand I >
dmd.I3 <		Present demand I3<
dmd.I3 >		Present demand I3>
dmd.12 <		Present demand I2<
dmd.I2 >		Present demand I2>
dmd.l1 <		Present demand I1<
dmd.I1 >		Present demand I1>
THDi <		Current harmonic distortion rate low alarm
THDi >		Current harmonic distortion rate high alarm
THDv <	XX.XX%	Voltage harmonic distortion rate low alarm
THDv >		Voltage harmonic distortion rate high alarm
lunb <		Current unbalance low alarm
lunb >		Current unbalance high alarm
Vunb < XXX.X %		Voltage unbalance low alarm
Vunb >		Voltage unbalance high alarm
F <		Grid frequency low alarm
F >	XX.XX HZ	Grid frequency high alarm
PF <		Total power factor low alarm
PF >	x.xxx	Total power factor high alarm
S <	хххх	Total apparent power low alarm
S >	_VA	Total apparent power high alarm
Q <	хххх	Total reactive power low alarm
Q >	_var	Total reactive power high alarm
Ρ <		Total active power low alarm
P >	XXXX _VV	Total active power high alarm
lo <		Zero-sequence current low alarm
lo >		Zero-sequence current high alarm
lavg >	x.xxx _A	Current average value low alarm
lavg <		Current average value high alarm

<		One of three phase currents low alarm
>		One of three phase currents high alarm
13 <		13 low alarm
13 >		13 high alarm
12 <		I2 low alarm
12 >		I2 high alarm
l1 <		I1 low alarm
l1 >		I1 high alarm
Vllavg <		Line voltage average value low alarm
Vllavg >		Line voltage average value high alarm
Vlnavg <		Phase voltage average value low alarm
Vlnavg >		Phase voltage average value high alarm
VII <		One of three line-voltages low alarm
VII >		One of three line-voltages high alarm
V31 <		V31 voltages low alarm
V31 >		V31 voltages high alarm
V23 <		V23 voltages low alarm
V23 >		V23 voltages high alarm
V12 <	xxx.x_v	V12 voltages low alarm
V12 >		V12 voltages high alarm
Vln <		One of three phases voltages low alarm
Vln >		One of three phases voltages high alarm
V3 <]	V3 voltages low alarm
V3 >		V3 voltages high alarm
V2 <		V2 voltages low alarm
V2 >]	V2 voltages high alarm
V1 <]	V1 voltages low alarm
V1 >		V1 voltages high alarm

5.2.6 Limit value setting

↓ Limits #1 ▶ Item Value Hys Over Volts 245.6 V 010.0 V Under Volts 190.0 V 010.0 V Over Amps 006.0 A 0.200 A Under Amps 0.000 A 0.000 A Over Power 3600 W 0100 W Under Power 0000 W 0000 W	Used for setting off-limit alarm for voltage, current and power.
Limits #2 ► Item Value Hys Swell 400.0 V 001.0 V Dip 190.0 V 001.0 V Interruptiongs 030.0 V 001.0 V Swell/Dips Disable ■	Used for setting voltage swell, sag and interruption.
Limits #3 Item Value Hys Rec Over Volt 520.0 Volt 080.0 Volt 080.0 <td>Used for setting over voltage, under voltage and over current in fault wave record.</td>	Used for setting over voltage, under voltage and over current in fault wave record.

5.2.7 Clear synchronous setting

Reset Data					
Reset E	nergy				
Reset D	emand				
Reset Li	imit				
Res.Syst	emEvent				
Reset S	OE				
Reset A	larm				
Res.Loa	dRecord				
Res.Puls	eCounter				
	-		2		

Parameters of energy, demand, Max./Min. value and Event are cleared in this interface. If the parameters are cleared, the relative value will be zero and not be reset; If energy is cleared, a piece of energy clearance SOE is made.

5.2.8 Time setting and meter reading time

			System	Setup rea	l-time-clo	ck
		l	time			
System Time 2017-01-16-09:10:37 Meter Reading 20**.**-01-00:00:00 DST Off DST Zone 00			Meter readin g time			
			DST	Daylight Mode	Saving	Time
			DST Zone	Daylight S	aving Tim	e Zone

5.2.9 Demand setting

Demand Settings	No.	1-6
No. Item Mode t(s) T(xt) 1-6 IPQS Fixed 0060 0015	Item	11,12,13,P,Q,S
	Mode	Slip/Fixed
	t	Update time
▲ ▼ ₹ 2	Т	T=n*t,

There are two demand measurement modes which are slip and fixed. The relative time parameters are set as t (updating time) and T (time zone).

Slip: meter calculates average demand during latest T minutes every t seconds, tests and records the value, automatically reads the demand every month;

Fixed: meter calculates average demand during latest T minutes after T minutes, tests and records the value, automatically reads the demand every month.

Slip mode

Note: calculation method in upper pictures takes 15min as example.

5.2.10 Monthly tariff setting

	Month	Tariffs	
Month	Day Type	Month	Day Type
01	#2	07	#1
02	#1	08	#1
03	#1	09	#1
04	#1	10	#1
05	#2	11	#1
06	#1	12	#1
	-		2

GPQM96 has two sets of daily tariffs. One month can be selected to follow one set of daily tariffs. Daily tariffs can be set in daily tariff page.

5.2.11 Daily tariff setting

		iffs 🕨	Tar	#1 Day		
	Tariffs	Time	No.	Tariffs	Time	No.
GP	T1	00:00	07	T2	00:00	01
	T1	00:00	08	T1	08:00	02
in a	T1	00:00	09	T3	20:00	03
	T1	00:00	10	T4	22:00	04
tim	T1	00:00	11	T1	00:00	05
	T1	00:00	12	T1	00:00	06
kin						
		€		•	•	

GPQM96 has two sets of daily tariffs. 24 hours n a day are divided into 12 twelve zone. Each ime zone can be selected with one from fours kinds of tariffs.

5.3 Example for programming operation

Suppose the wiring method of meter is three phase four wire and primary voltage is 10KV, change the wiring method to be three phase three wire and change primary voltage to be 6000V, the programming operation process is as follows,

6. Communication

Meter is defaulted to be equipped with one communication, RS-485 interface, Modbus-RTU protocol. It also can be extended with one communication by connecting with a module.

7. Technical specifications

Electric Cha	racteristics			
Accuracy	Voltage and current		0.2%	
	Power, Power Factor		0.2%	
	Frequency		±0.01Hz	
	Active pov	wer	IEC62053-22, class 0.2S	
	Reactive p	ower	IEC62053-23, class 2	
Data update	e rate		15	
	Wiring mo	ode	1P2W、3P3W、3P4W	
		Rated value	400 VAC L-N (690 VAC L-L)	
	Voltage	Overload	1.2Vln	
		Impedance	>1MΩ	
lawst		Rated value	1A or 5A	
input		Quarland	Continuous: 1.2In	
	Current	Overload	Instantaneous: 10In/5s	
		burden	<0.1VA	
		Rated value	<20mΩ	
	Grid frequency		(45~65)Hz	
Auxiliary	Working range		AC/DC (80~270) V	
supply	consumpt	ion	≤ 10VA	
Energy pulse output			1 photocoupler outputs, pulse width (80±20%) ms	
Digital input			AC220V input, isolation: 2000VAC	
			Contact rated at AC 250V/5A or DC 30V/5A	
Relay output			Isolation: 2500VAC	
Communica	ations			
RS485 port			Modbus-RTU, 2-wire, up to 38400bps	
Mechanical	Characteris	tics		
IP index	IP65 (fro	nt panel) and I	P20 (meter body)	
Dimensions	96×96×55	mm		

Environmental Characteristics		
Operating temperature	(-10∼60)°C	
Storage temperature	(-25∼70)°C	
Relative humidity	(5~95)% (no gel)	
Insulation	IEC 61010-1	
Electromagnetic Compatibility		
Immunity to electrostatic discharge	IEC 61000-4-2-Level III	
Immunity to radio-frequency field	IEC 61000-4-3- Level III	
Immunity to electrical fast	IEC 61000-4-4- Level IV	
transients/bursts		
Immunity to impulse waves	IEC 61000-4-5- Level IV	
Immunity to conducted disturbances	IEC 61000-4-6- Level III	
Immunity to power frequency	IEC 61000-4-8- Level III	
magnetic fields		
Immunity to voltage dips and short	IEC 61000-4-11- Level III	
interruptions		

Eetarp Engineering Pte Ltd | CRN: 200001617K Electrical Safety | Power Quality | Energy Management 11 Woodlands Close, #08-13 | Woodlands 11 Singapore 737853 Tel: +65 6339 3651 | Fax: +65 6339 3667 Email: info@eetarp.com | Web: www.eetarp.com Eetarp Power (M) Sdn Bhd | CRN: 201601034287 Electrical Safety | Power Quality | Energy Management A-5-11 Blk Allamanda | 10 Boulevard, Lebuhraya Sprint PJU 6A, 47400, PJ | Selangor, Malaysia Tel: +60 3 7729 3973 | Fax: +603 7729 8973 Email: info@eetarp.com | Web: www.eetarp.com

Document No.: EEPL-UM-GPQM96-Rev00

The information in this document is subject to change without further notice.