

1

 EEPL-MOD-REG-GEM630-CT-rev00

 GEM230-CT Input Registers

Address

(Register)

 Input Register

Parameter

 Modbus

 Protocol

Start

 Address Hex

 Description
Length

(bytes)

Data

Format
Units

Hi

Byte

Lo

Byte

30001 Phase 1 line to neutral volts. 4 Float V 00 00

30007 Phase 1 current. 4 Float A 00 06

30013 Phase 1 power. 4 Float W 00 0C

30019 Phase 1 apparent power. 4 Float VA 00 12

30025 Phase 1 reactive power. 4 Float VAr 00 18

30031 Phase 1 power factor 4 Float None 00 1E

30037 Phase 1 phase angle. 4 Float Degrees 00 24

30071 Frequency of supply voltages. 4 Float Hz 00 46

30073 Import active energy since last

reset
4

Float kWh 00 48

30075 Export active energy since last

reset
4

Float kWh 00 4A

30077 Import reactive energy since last

reset
4

Float kVArh 00 4C

30079 Export reactive energy since last

reset
4

Float kVArh 00 4E

30085 4 Float W 00 54

30087 4 Float W 00 56

30089 4 Float W 00 58

30091 4 Float W 00 5A

30093 4 Float W 00 5C

30095 4 Float W 00 5E

30259 4 Float A 01 02

30265 4 Float A 01 08

30343 Total active energy 4 Float kWh 01 56

30345 Total reactive energy 4 Float kVArh 01 58

30385 Current resettable total active

energy

4 Float kWh 01 80

30387 Current resettable total reactive

energy

4 Float kWh 01 82

34877 Total active Energy Rate 1 4 Float kWh 13 0C

34879 Total active Energy Rate 2 4 Float kWh 13 0E

34885 Import active Energy Rate 1 4 Float kWh 13 14

34887 Import active Energy Rate 2 4 Float kWh 13 16

34893 Export active Energy Rate 1 4 Float kWh 13 1C

34895 Export active Energy Rate 2 4 Float kWh 13 1E

34901 Total reactive Energy Rate 1 4 Float kVArh 13 24

34903 Total reactive Energy Rate 2 4 Float kVArh 13 26

34909 Import reactive Energy Rate 1 4 Float kVArh 13 2C

34911 Import reactive Energy Rate 2 4 Float kVArh 13 2E

34917 Export reactive Energy Rate 1 4 Float kVArh 13 34

34919 Export reactive Energy Rate 2 4 Float kVArh 13 36

35075 Maximum system positive active

power demand of Tarrif 1

4 Float kW
13 D2

35077 Maximum system positive active

power demand of Tarrif 2

4 Float kW
13 D4

35205 Maximum system reverse active

power demand of Tarrif 1

4 Float kW 14 54

35207 Maximum system reverse active 4 Float kW 14 56

2

 EEPL-MOD-REG-GEM630-CT-rev00

power demand of Tarrif 2

35473
Tariff1 total active Maximum

Power Demand
4 Float W 15 60

35479 Tariff 1 L1 Maximum Current

Demand
4

Float
A 15 66

35487 Tariff 2 total active Maximum

Power Demand
4 Float W 15 6E

35493 Tariff 2 L1 Maximum Current

Demand
4

Float
A 15 74

1.3 Modbus Protocol Holding Registers and Digital meter set up

Holding registers are used to store and display instrument configuration settings. All holding registers

not listed in the table below should be considered as reserved for manufacturer use and no attempt

should be made to modify their values.

The holding register parameters may be viewed or changed using the Modbus Protocol. Each

parameter is held in two consecutive 4X registers. Modbus Protocol Function Code 03 is used to read

the parameter and Function Code 16 is used to write. Write to only one parameter per message.

Address

Register

Parameter

 Modbus

Protocol

 Start

Address

Hex

 Valid range

Mode

High

Byte

Low

Byte

40013
Pulse output 1

Width
00 OC

Write pulse on period in

milliseconds: 60, 100 or 200, default

100.

Length : 4 byte

Data Format : Float

r/w

40019
Network Parity

Stop
00 12

Write the network port parity/stop bits

for MODBUS Protocol, where: 0 = One

stop bit and no parity, default. 1 = One

stop bit and even parity. 2 = One stop bit

and odd parity.3 = Two stop bits and no

parity.

Length : 4 byte

Data Format : Float

r/w

40021 Network Node 00 14

Write the network port node

address: 1 to 247 for MODBUS

Protocol, default 1.

Length : 4 byte

Data Format : Float

r/w

40029
Network Baud

Rate
00 1C

Write the network port baud rate for

MODBUS Protocol, where:

0 = 2400 baud. 1 = 4800 baud.

2 = 9600 baud, default.

5=1200 baud .

Length : 4 byte

Data Format : Float

r/w

40087
Pulse 1

Energy Type
00 56

Write MODBUS Protocol input

parameter for pulse out 1:

1: import active energy

2: total active energy

4: export active energy, default

5: import reactive energy

r/w

3

 EEPL-MOD-REG-GEM630-CT-rev00

6: total reactive energy

8: export reactive energy

Length : 4 byte

Data Format : Float

461457 wo

462721

Demand interval

, slide time,

automatic scroll

display

interval(scroll

Time)，
Backlight time

F5 00

数据格式：需量时间-滑差时间-轮显

时间-背光点亮时间，单位是 min-min-

s-min，默认 15-01-00-60

Note：

Demand interval =0：需量不更新

scroll time=0：the display does not

scroll automatically.

Backlight time=0 Backlight always on

Length : 4 byte

Data Format : BCD

r/w

463761 Pulse 1 Divisor F9 10

Write pulse divisor index: n = 0 to 3

00 00:0.001 kWh(KVArh)/imp,default

00 01:0.01 kWh(KVArh)/imp

00 02:0.1 kWh(KVArh)/imp

00 03:1 kWh(KVArh)/imp

Length : 2 byte

Data Format : Hex

r/w

463777
Measurement

mode
F9 20

00 01：total = import

00 02：total = import + export

00 03：total = import – export

Length : 2 byte

Data Format : Hex

r/w

463793 Running time F9 30

Continuous working period--hour

Length : 4 byte

Data Format : Float

r/w

Note：

Mode 1: Measure imported energy, Total energy=Imported energy.

Mode 2: Measure imported energy and exported energy, Total energy=Import energy + export

energy(default).

Mode 3: Measure imported energy and exported energy, Total energy=Imported energy- exported

energy.

2 RS485 General Information
Some of the information in this section relates to other Eetarp Digital meter product families, and is

included to assist where a mixed network is implemented.RS485 or EIA (Electronic Industries

Association) RS485 is a balanced line, half-duplex transmission system allowing transmission

distances of up to 1.2 km. The following table summarizes the RS-485 Standard:

PARAMETER

Mode of Operation Differential

Number of Drivers and Receivers 32 Drivers, 32 Receivers

Maximum Cable Length 1200 m

Maximum Data Rate 10 M baud

Maximum Common Mode Voltage 12 V to –7 V

4

 EEPL-MOD-REG-GEM630-CT-rev00

Minimum Driver Output Levels (Loaded) +/– 1.5 V

Minimum Driver Output Levels (Unloaded) +/– 6 V

Drive Load Minimum 60 ohms

Driver Output Short Circuit Current Limit 150 mA to Gnd,

250 mA to 12 V

250 mA to –7 V

Minimum Receiver Input Resistance 12 kohms

Receiver Sensitivity +/– 200 mV

Further information relating to RS485 may be obtained from either the EIA or the various RS485

device manufacturers, for example Texas Instruments or Maxim Semiconductors. This list is not

exhaustive.

2.1 Half Duplex

Half duplex is a system in which one or more transmitters (talkers) can communicate with one or more

receivers (listeners) with only one transmitter being active at any one time. For example, a

“conversation” is started by asking a question, the person who has asked the question will then listen

until he gets an answer or until he decides that the individual who was asked the question is not going

to reply.

In a 485 network the “master” will start the “conversation” with a “query” addressed to a specific

“slave”, the “master” will then listen for the “slave’s” response. If the “slave” does not respond within

a pre-defined period, (set by control software in the “master”), the “master” will abandon the

“conversation”.

2.2 Connecting the Instruments

If connecting an RS485 network to a PC use caution if contemplating the use of an RS232 to 485

converter together with a USB to RS485 adapter. Consider either an RS232 to RS485 converter,

connected directly to a suitable RS232 jack on the PC, or use a USB to RS485 converter or, for desktop

PCs a suitable plug in RS485 card. (Many 232:485 converters draw power from the RS232 socket. If

using a USB to RS232 adapter, the adapter may not have enough power available to run the 232:485

converter.)

Screened twisted pair cable should be used. For longer cable runs or noisier environments, use of a

cable specifically designed for RS485 may be necessary to achieve optimum performance. All “A”

terminals should be connected together using one conductor of the twisted pair cable, all “B” terminals

should be connected together using the other conductor in the pair. The cable screen should be

connected to the “Gnd” terminals.

A Belden 9841 (Single pair) or 9842 (Two pair) or similar cable with a characteristic impedance of 120

ohms is recommended. The cable should be terminated at each end with a 120 ohm, quarter watt (or

greater) resistor. Note: Diagram shows wiring topology only. Always follow terminal identification on

Eetarp Digital meter product label.

There must be no more than two wires connected to each terminal, this ensures that a “Daisy Chain or

“straight line” configuration is used. A “Star” or a network with “Stubs (Tees)” is not recommended as

reflections within the cable may result in data corruption.

5

 EEPL-MOD-REG-GEM630-CT-rev00

2.3 A and B terminals

The A and B connections to the Eetarp Digital meter products can be identified by the signals present

on them whilst there is activity on the RS485 bus:

2.4 Troubleshooting

·Start with a simple network, one master and one slave. With Eetarp Digital meter products this is

easily achieved as the network can be left intact whilst individual instruments are disconnected by

removing the RS485 connection from the rear of the instrument.

·Check that the network is connected together correctly. That is all of the “A’s” are connected together,

and all of the “B’s” are connected together, and also that all of the “Gnd’s” are connected together.

·Confirm that the data “transmitted” onto the RS485 is not echoed back to the PC on the RS232

lines.(This facility is sometimes a link option within the converter). Many PC based packages seem to

not perform well when they receive an echo of the message they are transmitting. SpecView and

PCView (PC software) with a RS232 to RS485 converter are believed to include this feature.

·Confirm that the Address of the instrument is the same as the “master” is expecting.

·If the “network” operates with one instrument but not more than one check that each instrument has a

unique address.

· Each request for data must be restricted to 40 parameters or less. Violating this requirement will

impact the performance of the instrument and may result in a response time in excess of the

specification.

·Check that the MODBUS Protocol mode (RTU or ASCII) and serial parameters (baud rate, number of

data bits, number of stop bits and parity) are the same for all devices on the network.

·Check that the “master” is requesting floating-point variables (pairs of registers placed on floating

point boundaries) and is not “splitting” floating point variables.

·Check that the floating-point byte order expected by the “master” is the same as that used by Eetarp

Digital meter products.

·If possible obtain a second RS232 to RS485 converter and connect it between the RS485 bus and an

additional PC equipped with a software package, which can display the data on the bus. Check for the

existence of valid requests.

3 MODBUS Protocol General Information

6

 EEPL-MOD-REG-GEM630-CT-rev00

Communication on a MODBUS Protocol Network is initiated (started) by a “Master” sending a query

to a “Slave”. The “Slave“, which is constantly monitoring the network for queries addressed to it, will

respond by performing the requested action and sending a response back to the ”Master”. Only the

“Master” can initiate a query.

In the MODBUS Protocol the master can address individual slaves, or, using a special “Broadcast”

address, can initiate a broadcast message to all slaves. The Eetarp Digital meter do not support the

broadcast address.

3.1 MODBUS Protocol Message Format

The MODBUS Protocol defines the format for the master’s query and the slave’s response.

The query contains the device (or broadcast) address, a function code defining the requested action,

any data to be sent, and an error-checking field.

The response contains fields confirming the action taken, any data to be returned, and an error-

checking field. If an error occurred in receipt of the message then the message is ignored, if the slave is

unable to perform the requested action, then it will construct an error message and send it as its

response. The MODBUS Protocol functions used by the Eetarp Digital meters copy 16 bit register

values between master and slaves. However, the data used by the Eetarp Digital meter is in 32 bit IEEE

754 floating point format. Thus each instrument parameter is conceptually held in two adjacent

MODBUS Protocol registers. Query

The following example illustrates a request for a single floating point parameter i.e. two 16-bit Modbus

Protocol Registers.

First Byte Last Byte

 Slave

Address

Function

Code

Start

Address

(Hi)

Start

Address

(Lo)

Number

of

Points

(Hi)

Number

of

Points

(Lo)

Error

Check

(Lo)

Error

Check

(Hi)

Slave Address: 8-bit value representing the slave being addressed (1 to 247), 0 is reserved for the

broadcast address. The Eetarp Digital meters do not support the broadcast address.

Function Code: 8-bit value telling the addressed slave what action is to be performed. (3, 4, 8 or 16 are

valid for Eetarp Digital meter)

Start Address (Hi): The top (most significant) eight bits of a 16-bit number specifying the start address

of the data being requested.

Start Address (Lo): The bottom (least significant) eight bits of a 16-bit number specifying the start

address of the data being requested. As registers are used in pairs and start at zero, then this must be an

even number.

Number of Points (Hi): The top (most significant) eight bits of a 16-bit number specifying the number

of registers being requested.

Number of Points (Lo): The bottom (least significant) eight bits of a 16-bit number specifying the

number of registers being requested. As registers are used in pairs, then this must be an

even number.

Error Check (Lo): The bottom (least significant) eight bits of a 16-bit number representing the error

check value.

Error Check (Hi): The top (most significant) eight bits of a 16-bit number representing the error

check value.

Response

The example illustrates the normal response to a request for a single floating point parameter i.e. two

16-bit Modbus Protocol Registers.

7

 EEPL-MOD-REG-GEM630-CT-rev00

First Byte Last Byte

Slave

Address

Function

Code

Byte

Count

First

Register

(Hi)

First

Register

(Lo)

Second

Register

(Hi)

Second

Register

(Lo)

Error

Check

(Lo)

Error

Check

(Hi)

Slave Address: 8-bit value representing the address of slave that is responding.

Function Code: 8-bit value which, when a copy of the function code in the query, indicates that the

slave recognised the query and has responded. (See also Exception Response).

Byte Count: 8-bit value indicating the number of data bytes contained within this response

First Register (Hi)*: The top (most significant) eight bits of a 16-bit number representing the first

register requested in the query.

First Register (Lo)*: The bottom (least significant) eight bits of a 16-bit number representing the first

register requested in the query.

Second Register (Hi)*: The top (most significant) eight bits of a 16-bit number representing the

second register requested in the query.

Second Register (Lo)*: The bottom (least significant) eight bits of a 16-bit number representing the

second register requested in the query.

Error Check (Lo): The bottom (least significant) eight bits of a 16-bit number representing the

error check value.

Error Check (Hi): The top (most significant) eight bits of a 16-bit number representing the error

check value.

*These four bytes together give the value of the floating point parameter requested.

Exception Response

If an error is detected in the content of the query (excluding parity errors and Error Check mismatch),

then an error response (called an exception response), will be sent to the master. The exception

response is identified by the function code being a copy of the query function code but with the most-

significant bit set. The data contained in an exception response is a single byte error code.

First Byte Last Byte

Slave

Address

Function

Code

Error

Code

Error

Check

(Lo)

Error

Check

(Hi)

Slave Address: 8-bit value representing the address of slave that is responding.

Function Code: 8 bit value which is the function code in the query OR'ed with 80 hex, indicating that

the slave either does not recognise the query or could not carry out the action

requested.

Error Code: 8-bit value indicating the nature of the exception detected. (See “Table Of

Exception Codes“ later).

Error Check (Lo): The bottom (least significant) eight bits of a 16-bit number representing the error

check value.

Error Check (Hi): The top (most significant) eight bits of a 16-bit number representing the error

check value.

3.2 Serial Transmission Modes

There are two MODBUS Protocol serial transmission modes, ASCII and RTU. Eetarp Digital meters

do not support the ASCII mode.

In RTU (Remote Terminal Unit) mode, each 8-bit byte is used in the full binary range and is not

limited to ASCII characters as in ASCII Mode. The greater data density allows better data throughput

for the same baud rate, however each message must be transmitted in a continuous stream. This is very

unlikely to be a problem for modern communications equipment.

Coding System: Full 8-bit binary per byte. In this document, the value of each byte will be shown as

two hexadecimal characters each in the range 0-9 or A-F.

Line Protocol: 1 start bit, followed by the 8 data bits. The 8 data bits are sent with least significant bit

first.

8

 EEPL-MOD-REG-GEM630-CT-rev00

User Option Of Parity No Parity and 2 Stop Bits

And Stop Bits: No Parity and 1 Stop Bit

Even Parity and 1 Stop Bit

Odd Parity and 1 Stop Bit.

User Option of Baud 1200，2400，4800 ，9600

The baud rate, parity and stop bits must be selected to match the master’s settings.

3.3 MODBUS Protocol Message Timing (RTU Mode)

A MODBUS Protocol message has defined beginning and ending points. The receiving devices

recognizes the start of the message, reads the “Slave Address” to determine if they are being addressed

and knowing when the message is completed they can use the Error Check bytes and parity bits to

confirm the integrity of the message. If the Error Check or parity fails then the message is discarded.

In RTU mode, messages starts with a silent interval of at least 3.5 character times.

The first byte of a message is then transmitted, the device address.

Master and slave devices monitor the network continuously, including during the ‘silent’ intervals.

When the first byte (the address byte) is received, each device checks it to find out if it is the addressed

device. If the device determines that it is the one being addressed it records the whole message and acts

accordingly, if it is not being addressed it continues monitoring for the next message.

Following the last transmitted byte, a silent interval of at least 3.5 character times marks the end of the

message. A new message can begin after this interval.

The entire message must be transmitted as a continuous stream. If a silent interval of more than 1.5

character times occurs before completion of the message, the receiving device flushes the incomplete

message and assumes that the next byte will be the address byte of a new message.

Similarly, if a new message begins earlier than 3.5 character times following a previous message, the

receiving device may consider it a continuation of the previous message. This will result in an error, as

the value in the final CRC field will not be valid for the combined messages.

3.4 How Characters are Transmitted Serially

When messages are transmitted on standard MODBUS Protocol serial networks each byte is sent in

this order (left to right):

Transmit Character = Start Bit + Data Byte + Parity Bit + 1 Stop Bit (11 bits total):

 Least Significant Bit (LSB) Most Significant Bit (MSB)

Start 1 2 3 4 5 6 7 8 Party Stop

Transmit Character = Start Bit + Data Byte + 2 Stop Bits (11 bits total):

Start 1 2 3 4 5 6 7 8 Stop Stop

Eetarp Digital meters additionally support No parity, 1 stop bit.

Transmit Character = Start Bit + Data Byte + 1 Stop Bit (10 bits total):

Start 1 2 3 4 5 6 7 8 Stop

The master is configured by the user to wait for a predetermined timeout interval. The master will wait

for this period of time before deciding that the slave is not going to respond and that the transaction

should be aborted. Care must be taken when determining the timeout period from both the master and

the slaves’ specifications. The slave may define the ‘response time’ as being the period from the receipt

of the last bit of the query to the transmission of the first bit of the response. The master may define the

‘response time’ as period between transmitting the first bit of the query to the receipt of the last bit of

the response. It can be seen that message transmission time, which is a function of the baud rate, must

be included in the timeout calculation.

9

 EEPL-MOD-REG-GEM630-CT-rev00

3.5 Error Checking Methods

Standard MODBUS Protocol serial networks use two error checking processes, the error check bytes

mentioned above check message integrity whilst Parity checking (even or odd) can be applied to each

byte in the message.

3.5.1 Parity Checking

If parity checking is enabled – by selecting either Even or Odd Parity - the quantity of “1’s” will be

counted in the data portion of each transmit character. The parity bit will then be set to a 0 or 1 to result

in an Even or Odd total of “1’s”.

Note that parity checking can only detect an error if an odd number of bits are picked up or dropped in

a transmit character during transmission, if for example two 1’s are corrupted to 0’s the parity check

will not find the error.

If No Parity checking is specified, no parity bit is transmitted and no parity check can be made. Also, if

No Parity checking is specified and one stop bit is selected the transmit character is effectively

shortened by one bit.

3.5.2 CRC Checking

The error check bytes of the MODBUS Protocol messages contain a Cyclical Redundancy Check

(CRC) value that is used to check the content of the entire message. The error check bytes must always

be present to comply with the MODBUS Protocol, there is no option to disable it.

The error check bytes represent a 16-bit binary value, calculated by the transmitting device. The

receiving device must recalculate the CRC during receipt of the message and compare the calculated

value to the value received in the error check bytes. If the two values are not equal, the message should

be discarded.

The error check calculation is started by first pre-loading a 16-bit register to all 1’s (i.e. Hex (FFFF))

each successive 8-bit byte of the message is applied to the current contents of the register. Note: only

the eight bits of data in each transmit character are used for generating the CRC, start bits, stop bits and

the parity bit, if one is used, are not included in the error check bytes.

During generation of the error check bytes, each 8-bit message byte is exclusive OR'ed with the lower

half of the 16 bit register. The register is then shifted eight times in the direction of the least significant

bit (LSB), with a zero filled into the most significant bit (MSB) position. After each shift the LSB prior

to the shift is extracted and examined. If the LSB was a 1, the register is then exclusive OR'ed with a

pre-set, fixed value. If the LSB was a 0, no exclusive OR takes place.

This process is repeated until all eight shifts have been performed. After the last shift, the next 8-bit

message byte is exclusive OR'ed with the lower half of the 16 bit register, and the process repeated.

The final contents of the register, after all the bytes of the message have been applied, is the error

check value. In the following pseudo code “Error Word” is a 16-bit value representing the error check

values.

BEGIN

 Error Word = Hex (FFFF)

 FOR Each byte in message

 Error Word = Error Word XOR byte in message

 FOR Each bit in byte

 LSB = Error Word AND Hex (0001)

 IF LSB = 1 THEN Error Word = Error Word – 1

 Error Word = Error Word / 2

 IF LSB = 1 THEN Error Word = Error Word XOR Hex (A001)

 NEXT bit in byte

NEXT Byte in message

END

10

 EEPL-MOD-REG-GEM630-CT-rev00

3.6 Function Codes

The function code part of a MODBUS Protocol message defines the action to be taken by the slave.

Eetarp Digital meters support the following function codes:

Code
MODBUS Protocol

name
Description

03
Read Holding

Registers

Read the contents of read/write

location(4X references)

04 Read Input Registers
Read the contents of read only

location(3X references)

3.7 IEEE floating point format

The MODBUS Protocol defines 16 bit “Registers” for the data variables. A 16-bit number would prove

too restrictive, for energy parameters for example, as the maximum range of a 16-bit number is 65535.

However, there are a number of approaches that have been adopted to overcome this restriction. Eetarp

Digital meters use two consecutive registers to represent a floating-point number, effectively

expanding the range to +/- 1x1037.

The values produced by Eetarp Digital meters can be used directly without any requirement to “scale”

the values, for example, the units for the voltage parameters are volts, the units for the power

parameters are watts etc.

What is a floating point Number?

A floating-point number is a number with two parts, a mantissa and an exponent and is written in the

form 1.234 x 105. The mantissa (1.234 in this example) must have the decimal point moved to the right

with the number of places determined by the exponent (5 places in this example) i.e. 1.234x 105 =

123400. If the exponent is negative the decimal point is moved to the left.

What is an IEEE 754 format floating-point number?

An IEEE 754 floating point number is the binary equivalent of the decimal floating-point number

shown above. The major difference being that the most significant bit of the mantissa is always

arranged to be 1 and is thus not needed in the representation of the number. The process by which the

most significant bit is arranged to be 1 is called normalization, the mantissa is thus referred to as a

“normal mantissa”. During normalization the bits in the mantissa are shifted to the left whilst the

exponent is decremented until the most significant bit of the mantissa is one. In the special case where

the number is zero both mantissa and exponent are zero.

The bits in an IEEE 754 format have the following significance:

Data Hi Reg,

Hi Byte.

Data Hi Reg,

Lo Byte.

Data Lo Reg,

Hi Byte.

Data Lo Reg,

Lo Byte.

SEEE

EEEE

EMMM

MMMM

MMMM

MMMM

MMMM

MMMM

Where:

S represents the sign bit where 1 is negative and 0 is positive

E is the 8-bit exponent with an offset of 127 i.e. an exponent of zero is represented by 127, an

exponent of 1 by 128 etc.

M is the 23-bit normal mantissa. The 24th bit is always 1 and, therefore, is not stored.

Using the above format the floating point number 240.5 is represented as 43708000 hex:

Data Hi Reg,

Hi Byte

Data Hi Reg,

Lo Byte

Data Lo Reg,

Hi Byte

Data Lo Reg,

Lo Byte

43 70 80 00

The following example demonstrates how to convert IEEE 754 floating-point numbers from their

hexadecimal form to decimal form. For this example, we will use the value for 240.5 shown above

Note that the floating-point storage representation is not an intuitive format. To convert this value to

decimal, the bits should be separated as specified in the floating-point number storage format table

shown above.

For example:

11

 EEPL-MOD-REG-GEM630-CT-rev00

Data Hi Reg,

Hi Byte

Data Hi Reg,

Lo Byte

Data Lo Reg,

Hi Byte

Data Lo Reg,

Lo Byte

0100 0011 0111 0000 1000 0000 0000 0000

From this you can determine the following information.

·The sign bit is 0, indicating a positive number.

·The exponent value is 10000110 binary or 134 decimal. Subtracting 127 from 134 leaves 7, which is

the actual exponent.

·The mantissa appears as the binary number 11100001000000000000000

There is an implied binary point at the left of the mantissa that is always preceded by a 1. This bit is not

stored in the hexadecimal representation of the floating-point number. Adding 1 and the binary point to

the beginning of the mantissa gives the following:

1.11100001000000000000000

Now, we adjust the mantissa for the exponent. A negative exponent moves the binary point to the left.

A positive exponent moves the binary point to the right. Because the exponent is 7, the mantissa is

adjusted as follows:

11110000.1000000000000000

Finally, we have a binary floating-point number. Binary bits that are to the left of the binary point

represent

the power of two corresponding to their position. For example, 11110000 represents (1 x 27) + (1 x 26)

+ (1x 25) + (1 x 24) + (0 x 23)+ (0 x 22) + (0 x 21)+ (0 x 20) = 240.

Binary bits that are to the right of the binary point also represent a power of 2 corresponding to their

position. As the digits are to the right of the binary point the powers are negative. For example: .100

represents (1 x 2-1) + (0 x 2-2)+ (0 x 2-3) + … which equals 0.5.

Adding these two numbers together and making reference to the sign bit produces the number +240.5.

For each floating point value requested two MODBUS Protocol registers (four bytes) must be

requested. The received order and significance of these four bytes for Eetarp Digital meters is shown

below:

Data Hi Reg,

Hi Byte

Data Hi Reg,

Lo Byte

Data Lo Reg,

Hi Byte

Data Lo Reg,

Lo Byte

3.8 MODBUS Protocol Commands supported

All Eetarp Digital meters support the “Read Input Register” (3X registers), the “Read Holding

Register” (4X registers) and the “Pre-set Multiple Registers” (write 4X registers) commands of the

MODBUS Protocol RTU protocol. All values stored and returned are in floating point format to IEEE

754 with the most significant register first.

3.8.1 Read Input Registers

MODBUS Protocol code 04 reads the contents of the 3X registers.

Example

The following query will request ‘Volts 1’ from an instrument with node address 1:

Field Name
Example(Hex

)

Slave Address 01

Function 04

Starting Address High 00

Starting Address Low 00

Number of Points High 00

Number of Points Low 02

Error Check Low 71

Error Check High CB
Note: Data must be requested in register pairs i.e. the “Starting Address“ and the “Number of Points”

must be even numbers to request a floating point variable. If the “Starting Address” or the “Number of

12

 EEPL-MOD-REG-GEM630-CT-rev00

points” is odd then the query will fall in the middle of a floating point variable the product will return

an error message.

The following response returns the contents of Volts 1 as 230.2. But see also “Exception Response”

later.

Field Name Example

(Hex)

Slave Address 01

Function 04

Byte Count 04

Data, High Reg, High Byte 43

Data, High Reg, Low Byte 66

Data, Low Reg, High Byte 33

Data, Low Reg, Low Byte 34

Error Check Low 1B

Error Check High 38

3.9 Holding Registers

3.9.1 Read Holding Registers

MODBUS Protocol code 03 reads the contents of the 4X registers.

Example

The following query will request the prevailing ‘Pulse output 1 Width’:

Field Name Example

(Hex)

Slave Address 01

Function 03

Starting Address High 00

Starting Address Low 0C

Number of Points High 00

Number of Points Low 02

Error Check Low 04

Error Check High 08
Note: Data must be requested in register pairs i.e. the “Starting Address“ and the “Number of Points”

must be even numbers to request a floating point variable. If the “Starting Address” or the “Number of

points” is odd then the query will fall in the middle of a floating point variable the product will return

an error message.

The following response returns the contents of Demand Time as 1, But see also “Exception Response”

later.

Field Name Example (Hex)

Slave Address 01

Function 03

Byte Count 04

Data, High Reg, High Byte 42

Data, High Reg, Low Byte C8

Data, Low Reg, High Byte 00

Data, Low Reg, Low Byte 00

Error Check Low 6F

Error Check High B5

3.9.2 Write Holding Registers

MODBUS Protocol code 10 (16 decimal) writes the contents of the 4X registers.

Example

13

 EEPL-MOD-REG-GEM630-CT-rev00

The following query will set the Pulse output 1 Width to 60 ms, which effectively resets the Demand

Time:

Field Name Example (Hex)

Slave Address 01

Function 10

Starting Address High 00

Starting Address Low 0C

Number of Registers High 00

Number of Registers Low 02

Byte Count 04

Data, High Reg, High Byte 42

Data, High Reg, Low Byte 70

Data, Low Reg, High Byte 00

Data, Low Reg, Low Byte 00

Error Check Low E6

Error Check High 59

Note: Data must be written in register pairs i.e. the “Starting Address“ and the “Number of Points”

must be even numbers to write a floating point variable. If the “Starting Address” or the “Number of

points” is odd then the query will fall in the middle of a floating point variable the product will return

an error message. In general only one floating point value can be written per query

The following response indicates that the write has been successful. But see also “Exception

Response”later.

Field Name Example (Hex)

Slave Address 01

Function 10

Starting Address High 00

Starting Address Low 02

Number of Registers High 00

Number of Registers Low 02

Error Check Low E0

Error Check High 08

14

 EEPL-MOD-REG-GEM630-CT-rev00

EETARP Engineering Pte Ltd

11, Woodlands Close,

#08-13 Woodlands 11,

Singapore 737853

Tel: +65 63393651

Fax: +65 63393667

Email: info@eetarp.com

www.eetarp.com

EETARP Power (M) Sdn Bhd

(formerly known as EESB Engineering Sdn Bhd)

No A-5-11, Block Allamanda

10 Boulevard, Lebuhraya Sprint

PJU 6A, 47400, Petaling Jaya

Selangor, Malaysia

Tel: +603 77293973

Fax: +603 77298973

Email: Info@eetarp.com

www.eetarp.com

http://www.eetarp.com/

