

ELECTRICAL SAFETY POWER QUALITY ENERGY MANAGEMENT

Eetarp Graphene

- Smart Monitoring Platform (IoT Solution)
- Highly Customizable and Scalable
- Customizable Reporting System
- Web-Client to Access your Data wherever you want
- Easy database integration (e.g. SQL)

www.eetarp.com

Product Description

Graphene is a modular and scalable management system for various applications. It not only assists the user in detecting potential failure but also enables to diagnose and analyze the potential issue in order to increase the overall system reliability and efficiency. At the same time, it presents meaningful information with a highly customizable report function.

This enables Graphene to work as a centralized solution to combine and transfer data from multiple locations through intra-, or inter-net, from systems like Building Management Systems, Lighting Management Systems, Solar Systems, and Chiller Monitoring Systems.

The open communication interfaces allow the integration of IoT sensors and electrical, mechanical, environmental, facilities equipment. Also, systems like medical isolated power system (IPS), residual current monitoring system (RCMS), HVAC, or IFLS can be integrated into one comprehensive platform. This gives the user an in-depth insight into the system's entire data at any time, with real-time monitoring, alarming, and analysis. Whenever and wherever needed.

Feature Overview

- Modular and scalable system
- Highly customizable Reporting
- Dashboards
- Graphical online view
- Alarm notification via SMS or E-mail
- Trending of historical and live data
- Power quality analysis
- Facility monitoring
- Benchmark analytics
- Correlation analytics
- IoT device interfacing
- Integration via open communication protocols

- Benchmark Analysis Compare the present performance against historical records to identify necessaries settings and parameters in order to achieve the best system performance.
- Correlation Analysis Analyze the relationship and correlation between variables and values. The result will display the strength and synergies of the relationship.
- Determine where energy costs can be reduced without adversely affecting your business operation.
- Improve Reliability Prevent failures from occurring by identifying problems before they result in failures and subsequently downtime.
- Improved data reporting efficiency with automated reporting features in order to minimize human errors.
- Smart Monitoring Collect and display field data, perform calculations, and share information with other management systems via open database SQL server or web-server GUI.
- Load Profile Monitoring- Understand the load flow of your facility and its electrical system operation by tracking and metering the load profile.
- Improve your billing and cost allocation processes by automatic collection of meter readings and energy consumptions.

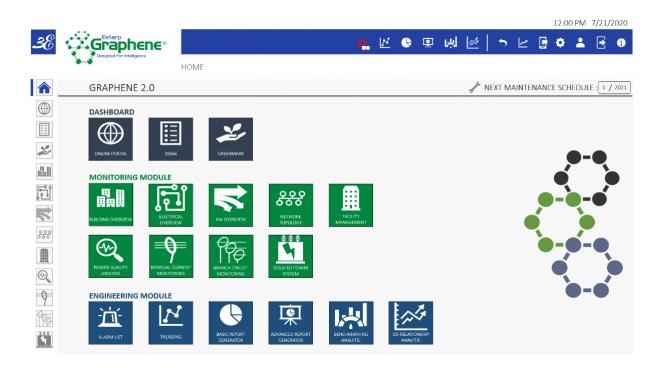
Applications

Building Monitoring System (BMS) - The centralized monitoring of the healthand alarm-statues of the building equipment and the possibility of remote control and maintenance increases the efficiency and flexibility of the maintenance team dramatically.

Energy Monitoring System (EMS) - Determine where energy costs can be reduced without adversely affecting your business operations. This prevents failures from occurring by identifying problems before they result in alarms, shutdowns, and subsequently, downtimes. Automatically generate the report according to the pre-configured report template to maximize efficiency.

Power Quality Monitoring System (PQMS / PMS) - Analyse and verify the power quality compliance with international standards or Singapore standards (e.g., Singapore Transmission Code, EN50160, IEC61000, IEEE519, etc.). Identify the source of power quality-related process interruptions, and initiate corrections with mitigation equipment.

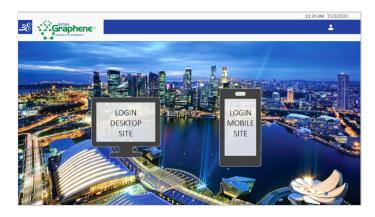
Isolated Power Monitoring System – Centralized monitoring system for Isolated Power System installed at Hospital and Medical Centers (Group 2, according to IEC60364-7-710) to ensure the insulation fault can notify the maintenance team immediately for rectification without risking the patient life.


Residual Current Monitoring System - Centralized monitoring system for Residual Current Monitoring Devices, which assists in detecting the deterioration of the insulation level during an early stage, which maximizes the uptime of the systems. The message control sends a message to the user even before reaching the tripping threshold of the RCD in order to perform predictive maintenance.

Data Center Infrastructure Monitoring (DCIM) - With an automated monitoring system and full-stack visibility across the entire data center, Graphene collects the data automatically and helps detect, monitor, and protect the entire IT infrastructure. The 24/7 monitoring maximizes reliability and efficiency.

In order to meet the requirements of a variety of applications, Graphene is designed to be as flexible as possible. The modularity design is optimized to provide the fastest turnaround time for the project implementation and allows the user to customize the system based on personal needs by selecting the required monitoring modules.

- Mobile Access (New!)
- Dashboard (Improved!)
- Electrical Overview (Improved!)
- Correlation Analytic (New!)
- Customizable Alarm Thresholds (New!)
- Standard Reporting
- Advanced Reporting
- SQL-Integration
- Failure Analysis (**New**!)
- Alarm Analysis & Management
- Message Control
- Archive Server and Historical Trend (Improved!)
- Power Quality Analysis
- Facility Monitoring
- Benchmark Analytic (New!)

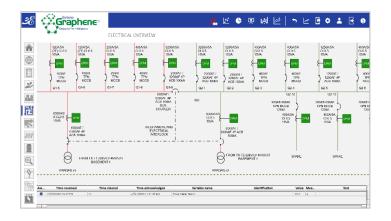


NEW! - Mobile Access

The mobile access allows remote access to real-time information on the user's mobile devices, e.g., phone or tablet, for remote monitoring.

This gives a comprehensive view of the monitored systems and helps the user to identify critical issues quickly from everywhere.

Improved Dashboard


The Improved Dashboard is designed to showcase a complete view of the system in the most efficient way. With bar charts, pie charts, and live graphical trending, the user have quick access to useful information at-a-glance. As a default, our dashboard module comes with a few templates designed to suit BCA Green Mark requirements and the SS564 standard.

		. Channa					. AM 8/2	
	3 8	Graphene		🇯 🗹 🕒 🗭 🚧 🖄	> ២	G 🕈	1	3 🔺
		Designed for Intelligence	\$\$564					
		\$\$564 - Main						
	\odot	Metric		Formula	Value			
		PUE		dE1 + dE2	1,640	-		
	1 1951		11:34 AM 8/26/2020	dE1: Electrical Energy Use over a representative measurement period (KWh)	5165667.00	30		
			an	2: ICT Electrical Energy Use over a representative measurement period (XWh)	165956.02	6		
🔏 💢 Gräphene 🛛 🕴 👫 🖡	M 🕒 🛄	· 써 🖉 🕤 너트 🖪	0 🕞 👗	(dH1 + dH2 + + dHn)/n (Overall)	53.000			
Disigned fractibilities				(dH1 + dH2 + + dHn)/n (per Hall)	53,000			
ONLINE PORTAL				n: Number of representative measurement points	4.000			
				FFC = dF4 + dF1	0.050			
PUE ENERGY COST Efficiency			^	dEA: Energy Use by fans over a yearTotal fan power (kWh)	256364.82			- 1
1.33 2.74				CEC - dES : dE1	0.260			
				dE5: Energy Use by cooling system over a year	1345181.95	38		
	88	40		CEC = dE6 + dE1	0.082			
			12	y loss in electrical system over a year (or a representative measurement period) (kWh)	425266.08	ĥ.		
1.27 1.67				CEC = dE7 + dE1 ergy Use by lighting over a year (or a representative measurement period) (XWH)	0.014			
				ergy can by ugning over a year (or a representation measurement period) (cwr) dA1 + dA2 - (average)	0.000			
R.H.				dA1 : dA2	0.000			
ENERGY CONSUMPTION		x			8/26/2020			~
	NON ASCENTAL PERADE 1.83			Image: Section of the section of t				
	~		Zaber (Ci(15) Zaber (Ci(3) Pender (CMS (Web)(5)	Power State D DFF Row I/h Power Hig State D DFF Ster_TOXS_Dubgring_3 10 mA Over Dannel				
	195	-	Transferred (see al R(1)	Indexedending. In the low cases				

Electrical Overview

This feature allows to see and monitor each location at-a-glance. Graphene provides real-time resource data utilization of the monitored systems to help the user understand and evaluate the electrical, mechanical, and environmental equipment conditions. **New!** - "World View" enables the overall view on the complete electrical- and mechanical system as well as floor plans with a convenient zoom-in function.

New! - "Automatic Line Colouring" automatically define system line colours based on the live status of power cables, energy flow direction, cable's voltage, or breaker status in order to improve the readability of the systems.

NEW! - 3D Graphical View

Instead of a commonly used 2D view, Graphene allows to have a 3D display of the systems. Supported files are 3D step files, 3DS files, and DWFX 3D files. All elements can be linked with variables and additional functions for animation and efficient data display. Pre-defined camera positions based on personal preferences helps to orientate quickly.

Customizable Alarm Threshold

The customized alarm threshold module allows the user to configure and personalize the threshold settings according to the system requirements with any back-end configuration or programming.

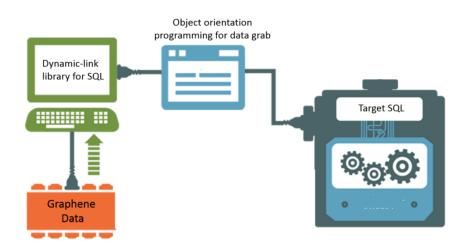
	IDUAL CURRE			Setpoint input X RCMS_Alarm Threshold Setting[1]
OUTGOING NO.	TAG NAME	CURRENT	THRESHOLD	
1	Circuit 1	6 mA	12 mA	Command Modify spontaneous value
2	Circuit 2	6 mA	10 mA	
3	Circuit 3	9 mA	10 mA	Measuring range Value 0 Min.: 0
4	Circuit 4	8 mA	10 mA	< > Max.: 15
5	Circuit 5	8 mA	10 mA	
6	Circuit 6	7 mA	10 mA	OK Cancel

Standard Reporting

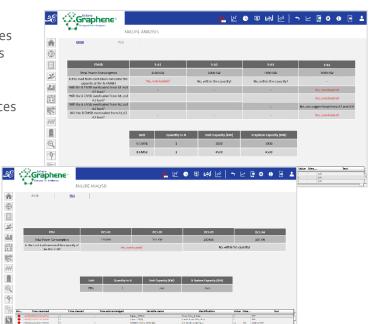

															11:37 A	M 7/21	/202
8	Gräphene					ň.	M	٩	稟	ы	Ľ	>	Ŀ	G	•	. 🖻	•
	Conjust for Intelligence	BASIC F	EPORT GE	ENERATOR													
1	Monthly Energy Coroumption (IOB14)		0	с	0									FILTE	R PROFILES	НШ	Ť.
)	lan	12.00	23.00	12.00	23.00												
	Feb	23.00	21.00	51.00	15.00										FILTER.		
	Mar	21.00	51.00	23.00	15.00									1.00			
	Apr	51.00	12.00	15.00	15.00									>>	DPOR	r	
	May	12.00	32.00	15.00	15.00												
	an .	32.00	\$2.00	19.00	12.00										PRNT		
	and the	12.00	51.00	51.00	23.00									- 50	e		
	Avg	51.00	23.00	12.00	15.00												
	Sep	23.00	15.00	32.00	15.00												
	Det	15.00	11.00	12.00	11:00												
	Rov	15.00	15.00	51.00	32.00												
	Dec	19.00	11.00	12.80	12.00												
	Sum	285	293	305	219												
		me cleared	Time	e acknowledged	Variable nan	••			bfe	ntificatio	•		alue Me			Text	
a B	 ++1/21/2020 13 35 37 AM ++1/21/2020 13 35 39 AM 				PS_Alarm_Simu[3] PS_Alarm_Simu[12]			Circuit 3 Circuit 6				1			sulation Fault		
18	*********************************				Random RCML VariableCI				Cutyon,			1	170		Auston reut		

The standard report module evaluates, calculates, filters, and presents the processed data saved in the archive database. The result will be shown in the report viewer window. The reports can be customized into graphical presentations such as pie charts, bar charts, texts (Microsoft Word), and Excel (Microsoft Excel). As a default, Graphene provides a standard reporting to generate a report based on pre-defined .txt or excel format.

NEW! - Advanced Reporting


The advanced reporting module allows the user to fully utilize all possibilities to create the reporting according to the requirements of the application and preferences without limits.

It's a complete reporting system that automatically processes the data into a preconfigured report template and processes it into text, excel, webpages or PDF-format. The results can automatically be sent to local or remote disk drives, send by email, or even to the FTP server. This feature significantly improves productivity, reduces human errors, and improves the time-consuming process when generating the reports.


SQL Integration

The SQL integration module provides the capability to evacuate archives to an SQL database, which allows the standardized storage of data for use in other applications. All common database structures are supported, for example, Microsoft SQL Server, Oracle, CRATE.IO, and other database systems with an ODBC interface.

Failure Analysis

The failure analysis module assists the user in understanding the consequences in case of any possible failure scenarios that occurred in the system at one glance. The decision making, which generally consumes significant resources and time, is now simplified with an automated failure analysis tool.

Alarm Analysis & Management

Alarming is used throughout the overall system to draw attention to critical events and to support the user in localizing and eliminating the alarms events. The ring buffer includes all active alarms which manages the followings:

- Time received in milliseconds as a unique signature
- Additional information such as cause, value, etc.
- Time cleared
- Time acknowledged

Als	Time received	Time cleared	Time acknowledged	Veriable name	Identification	Value	
• *	×1/2/0000 5 53 27 PM		-				FILTER
				PS_Alarm_Sirra(4)			
				PL Aarm Sina(3)			1767670
				95 Aarm 344(12)		1	
							TOTAL
							NOT ACKNOWLEDGED:
						- 11	

Message Control

Message control allows Graphene to send the SMS and email notification to user whenever an event occurred. It aims to reduce potential costly losses resulting from infrastructure downtime. It can send messages to any desired recipient or group of recipients automatically.

iolidays Glob	sisettings Transfer media		
in this dialog th defined.	e configuration settings for the different communic		OK Cancel
× 🛊	Settings for paging/SMS	Settings	Cancel Help
e 👘	Settings for GSM/SMS	Settings	
× 🔊	Settings for speech message	Settings	
	Settings for eMail	Settings	
× 🔹	Settings for SMS server	Settings	

Archive Server & Historical Trend

The archive server module logs and stores raw data from field devices as well as processes variables derived from any server into the database. Optional the SQL-Integration-Module is required in case data need to be stored in the SQL database.

New! - The latest version of the historical trend module allows the user to select the variables with drag & drop for graph plotting, which is an easy and user-friendly way to monitor state changes in real-time or historical playback data from the database.


Power Quality Analysis

The Power Quality Analysis Module presents waveforms of voltage, current, harmonic spectrum as well as phasor diagrams, trends of measured values, and energy consumption profiles.

This module enables the user to understand the cause of the disturbances and resolve problems with proactive methods in order to prevent breakdowns.

8 🤤	Gräphene			🙇 🗷 (b	₩ 🖉	5	20	٠	. E	
- 1	POWE	R QUALITY ANALYSIS									
Ð								1			
			SPPA INCOMER 1	SPPA INCOM	ER 2	SPPA INCOMER	3	SPPA IN	COMER	á 🖌	
E		U12	0.00 KV	0.00 KV		0.00 KV		0.0	0 KV		
	VOLTAGE 22,000V +/- 5%	U28	0.00 KV	OLDD KV		OLDD KV		an	D KV		
2		UM	0.00 KV	0.00 KV		0.00 KV		an	D KV		
L.	VOLTAGE THD < 5% FREQUENCY 49.5 - 50.5Hz	1H0V12	0.00 %	0.00 %		0.00 %		0.0	10 %		
		THOV23	0.00 %	0.00 %		0.00 %		0.0	0 %		
ĩ		THDA:31	0.00 %	D.00 %		D.00 %		D.0	0%		
	FREQUENCY 49.5 - 50.5Hz	F	0.00 Hz	0.00 Hz		0.00 Hz		0.0	0 H2		
R.		н	0.00 A	0.00 A		0.00 A		0.0	10 A		
88	CURRENT	12	0.00 A	0.00 A		0.00 A		0.0	30 A		
		13	0.00 A	0.00 A		0.00 A		0.0	10 A		
	SYSTEM CURRENT	toys	0.00 A	0.00 A		0.D0 A		0.0	10 A		
2	SYSTEM VOLTAGE	Vaya	0.00 KV	OLDD KV		OLDD KV		o.u	D KV		
	SYSTEM POWER FACTOR	19	0.00	0.00		0.00		0.	.00		
9	ACTIVE POWER	KW	0.00 kW	0.00 KW		0.00 kW		0.0	0 KW		
	ENERGY	NWH	0.00 MWh	0.00 MWh		0.00 MWh		0.00	MWh		
Ø Ale	Time received Time cleared	Time acknowledge	d Variabi	e name		fentification	Valu	e Mea	-	Text	_
	021/2020 1-31-58 AM 44		Power Meta-places Resident ROMA Metabolis		n ROVE CLASS	c.4	10.0	- A	r: Comet		

Facility Management

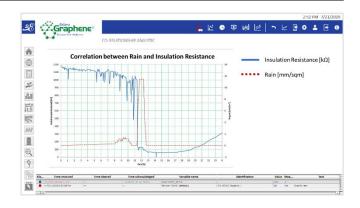
Graphene can monitor all electrical, mechanical equipment, environment sensors, and IoT devices essential for the building services, including:

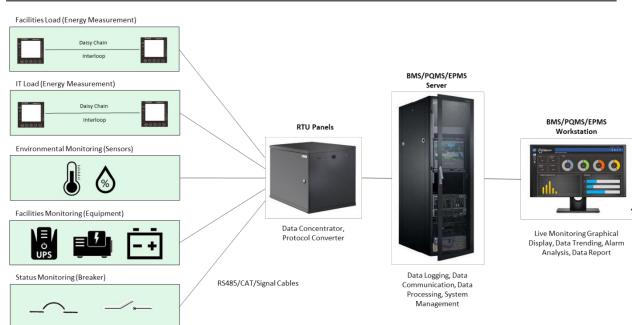
- Uninterruptible power supply (UPS)
- Environment sensors
- ACMV devices
- DC chargers
- Transformers

 Power quality meters and power meters
 Graphene provides a useful overview for detailed analysis to enhance users' decision-making
 process and improve the overall efficiency of the facilities management.

NEW! - Benchmark Analytic

Benchmark analytics module allow the user to measure the performance of their system by recording the historical best data as a benchmark reference. The recorded benchmark can be used as the reference point to further evaluate the system condition to improve the system efficiency and to identify potential issue caused by abnormality of the devices, tools or machines.


	Estarp .								1. A. I.				• -	2
- 940	iraphene				n 🗹	٩	嚫		2	ו כ	≤ ⊑	•	÷ 6	2
¥.	adgeed for this ligance	BENCHMARK	ING ANALYTIC											
History	Banchmarking Realt	me Benchmarking	Benchmark Setting											
Filter by :	Benchmark Curve			Compare Curve - P	rofile									
Profile T	None			None										
								Comp	are					
Benchmark	Threshold: %													
Ì			1,ben	rhmark3 VS						-				
	n her YRD for 40													
	herene and the second second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	herman herman	where p	yew	****	et Ande	enterform.	Murgalia				
Arrenere			MA .		(mp)					90				
1.111	ererererer.		111111111	1111111111	120000	1200	1000	1200	10000	0.00				
	ananana.	terreterre	******	erererer	11111	100.	100	1911	1222	<i></i>				
			and present	<i>1717711111</i>	waren pr	1999) V	ei i i	1997) 	1.1.1.1					
1111	an generating a base spectrum	18.55	and present	24.93	waren pr			999.	1.1.1.1	110				



NEW! - Correlation Analytic

The Correlation analytic module enables user to use statistical methods to discover the relationship between two variables/ data-sets and to identify whether there is any significant connections, patterns, or trends between the two.

A customized threshold setting can be used as alert in order to get informed by any abnormality earliest possible.

Eetarp Engineering Pte Ltd

11 Woodlands Close, #08-13 | Woodlands 11 Singapore 737853 Tel: +65 6339 3651 | Fax: +65 6339 3667 Email: contact@eetarp.com CRN: 200001617K

Eetarp Power (M) Sdn Bhd

A-5-11, Blk Allamanda 10 Boulevard, Lebuhraya Sprint PJU 6A 47400, PJ | Selangor, Malaysia Tel: +603 7729 3973 | Fax: +603 7729 8973 E-Mail: contact@eetarp.com CRN: 1205228P

EEPL-CAT-PQMS-rev06

Partners

Australia | China | India | Indonesia | Japan | Philippines | South Korea | Taiwan | Thailand | Vietnam

www.eetarp.com